UPSC GE Hydrogeology Syllabus
The syllabus consists of five sections: (A) Occurrence and distribution of groundwater (B) Groundwater movement and well hydraulics (C) Water wells and groundwater levels (D) Groundwater exploration (E) Groundwater quality and management.

Section A. Occurrence and distribution of groundwater
Origin of water on Earth; global water cycle and budget; residence time concept, geologic formations as aquifers; confined and unconfined aquifers; groundwater table mapping and piezometric nests; porosity, void ratio, effective porosity and representative porosity range; primary and secondary porosities; groundwater zonation; specific retention, specific yield; groundwater basins; springs.
Section B. Groundwater movement and well hydraulics
Groundwater flow concepts; Darcy's Law in isotropic and anisotropic media and validity; water flow rates, direction and water volume in aquifers; permeability and hydraulic conductivity and ranges in representative rocks; Bernoulli equation; determination of hydraulic conductivity in field and laboratory; concept of groundwater flow through dispersion and diffusion; transmissivity and aquifer thickness.
Section C. Water wells and groundwater levels
Unidirectional and radial flow to a well (steady and unsteady); well flow near aquifer boundaries; methods for constructing shallow wells, drilling wells, well completion; testing wells, pumping test, slug tests for confined and unconfined aquifers; fluctuations in groundwater levels; stream flow and groundwater flows; groundwater level fluctuations; land subsidence; impact of global climate change on groundwater.
Section D. Groundwater exploration
Surface investigation of groundwater- geologic, remote sensing, electrical resistivity, seismic, gravity and magnetic methods; sub-surface investigation of groundwater- test drilling, resistivity logging, spontaneous potential logging, radiation logging.
Section E. Groundwater quality and management
Groundwater composition, units of expression, mass-balance calculations; rock-water interaction (chemical equilibrium, free energy, redox reactions and cation/anion exchanges), graphic representation of chemical data; groundwater hardness, microorganisms in groundwater; water quality standards; sea-water intrusion; groundwater issues due to urbanization; solid and liquid waste disposal and plume migration models; application of isotopes (H, C, O) in groundwater; concepts of artificial recharge methods; managing groundwater resources; groundwater basin investigations and management practices.